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Abstract---Scale-model experiments, involving pure shear compression of a single layer embedded in a weaker 
matrix, were carried out to study the influence of a pre-existing isolated perturbation in the shape of an otherwise 
planar layer on the location and shape of folds. Different grades of paraffin wax were used as analogues for rocks 
with power-law rheology. The wax used for the matrix flows in steady state with a stress exponent of about 3.8. 
The layer has a stress exponent of about 3 and strain softens. Viscosity ratios (considered at yield stress for the 
layer and matrix) of 30:1 and 8:1 were used. Bell-shaped perturbations were introduced into the layer with initial 
average wavelengths of 8, 16 and 32 times layer thickness and corresponding initial limb dips of 12", 5 ° and 3 ° 
respectively. The fold packet develops at the site of the introduced perturbation and spreads slowly along the 
layer with increasing shortening. The shape of the initial perturbation strongly influences the fold geometry: 
broader initial perturbations develop broader folds, undergo more layer parallel shortening and develop a wider 
zone of contact strain. The influence of the introduced perturbation shape is most marked when its average 
wavelength component is larger than the dominant wavelength (i.e. the wavelength of maximum growth rate). 
The degree of bonding between layer and matrix also influences fold development. Folds with welded layer- 
matrix boundaries amplify much more slowly, with a greater proportion of layer parallel shortening, than folds 
where slip between layer and matrix is promoted. 

INTRODUCTION 

BUCKLE folds, which develop due to the mechanical 
instability of layered or anisotropic rocks under com- 
pression, produce some of the most spectacular 
examples of deformation structures on scales that range 
from millimetres to kilometres. The simplest example of 
buckle fold development, which also occurs quite com- 
monly in nature, is that of an isolated single layer 
embedded in a weaker matrix (e.g. Sherwin & Chapple 
1968, Hudleston & Hoist 1984). In this case, the spacing 
of layers is sufficiently large that folding can develop 
independently within each individual layer, leading to 
an overall disharmonic fold pattern. Establishing the 
parameters which control folding in this simple system 
represents a first step towards investigating more com- 
plex geometries involving multiple layers. 

A large body of both theoretical and experimental 
work already exists on the development of single layer 
buckle folds (e.g. Biot 1961, 1965, Biot et al. 1961, 
Ramberg 1961, 1963, 1964, Hudleston 1973, Fletcher 
1974, Cobbold 1975, Smith 1975, Neurath & Smith 
1982). As with all instabilities, a small perturbation in 
the basic flow, usually due to some initial irregularity in 
the layer, is required to initiate buckle folding (e.g. Biot 
et al. 1961, Cobbold 1975). Folding of a single layer can 
only develop a regular wavelength, independent of the 
shape and location of the initial layer irregularities, if the 
total amplification of the dominant (i.e. the fastest 
growing) wavelength component is large enough to 
effectively swamp these initial irregularities. As exten- 
sively discussed by Biot (1961) and Biot et al. (1961), 
buckling theory suggests that the total amplification 
required should be greater than about 1000. It is easily 

shown (see Appendix) that such a large amplification 
can only be achieved during the low-limb dip stage of 
fold formation, when the wavelength is established 
(Chapple 1968), if the initial irregularities are very small 
indeed. For example, the initial amplitude of the irregu- 
larities would need to be <0.004 mm in a I cm thick 
layer. Such extremely smooth layers are unlikely in 
nature and the amplification of folds will generally be 
much less than 1000 when wavelength selection effec- 
tively ceases. Values of natural fold amplification in the 
range 10-40 may be more realistic (e.g. Hudleston & 
Hoist 1984). The shape and distribution of initial pertur- 
bations along the layer will thus have a strong influence 
on the location and shape of folds, as has been suggested 
from earlier analogue experiments (Willis 1893, 
Cobbold 1975, Abbassi & Mancktelow 1990) and from 
numerical simulations (Lewis & Williams 1978, Wil- 
liams et al. 1978). Natural fold trains show a correspond- 
ing substantial degree of irregularity and are often only 
approximately periodic (Sherwin & Chapple 1968, 
Fletcher & Sherwin 1978, Hudleston & Hoist 1984, 
Ramsay & Huber 1987, figs. 17.7, 19.3, 19.7 and 19.23, 
Abbassi & Mancktelow 1990). 

The aim of this work is to investigate experimentally 
the relationship between initial perturbation shape and 
fold geometry at finite amplitude, extending the earlier 
study of Cobbold (1975). The influence of the degree of 
bonding between layer and matrix and of the viscosity 
contrast between layer and matrix is also considered. 
Fourier analysis of fold shape is used to establish the 
growth rate of the various wavelength components. The 
sum of these wavelength components represents the 
shape of the non-periodic folds developed serially from a 
single perturbation. A major advantage of analogue 
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scale-model experiments is that the geometry of devel- 
oping deformation structures can be continually ob- 
served to finite amplitudes, similar to those of natural 
structures. With the aid of an inscribed grid, a digitizing 
tablet and a small personal computer ,  the flow related to 
development of such structures can be analysed in con- 
siderable detail (Mancktelow 1991). Analogue materials 
can be chosen which show non-linear rheological behav- 
iour similar to that currently believed to be most appli- 
cable for large-strain deformation in rocks. For  this 
study, different grades of paraffin wax are used for layer 
and matrix to model folding in rocks with power-law 
rheology (Cobbold 1975, Neurath & Smith 1982, 
Mancktelow 1988b). Part II of this paper (Mancktelow 
& Abbassi 1992) uses the experimental results presented 
here to make direct comparison with current theories on 
buckle folding in non-linear materials. 

METHOD 

Experimental conditions and material properties 

All experiments were performed in pure shear using 
the automated deformation rig described in detail in 
Mancktelow (1988a). The strain-rate was maintained at 
3.00 x 10 -5 s -1, the stress cr 3 on the confining plates 
at 3 x 104pa (0.3bar) ,  and the temperature at 
26.1 ___ 0.1°C. The experiments were photographed at 
regular intervals, using a high quality, large format 
camera to minimize distortion. Photographic enlarge- 
ments were used for measurement of the fold para- 
meters described here and the nodal points of the 
inscribed grid digitized for further analysis of the strain 
and displacement fields (Mancktelow 1991). 

Two grades of paraffin wax were employed as model 
materials: the weaker matrix has a melting range of 46- 
48°C and the stiffer layer 58-60°C. Details of the proper- 
ties of paraffin wax and of the suppliers can be found in 
Mancktelow (1988b). For  the given experimental con- 
ditions, the paraffin waxes were within their fl field and 
have an elastic-non-linear viscous rheology (Figs. 1--4), 
with a power-law relationship between differential flow 
stress cr and strain rate ~ (Cobbold 1975, Mancktelow 
1988b) of the form: 

= B e x p ~ - - ~ )  e , 

where B is a material constant, Q the activation energy, 
R the gas constant, T the absolute temperature,  n the 
stress exponent  and x the strain sensitivity (reflecting 
any tendency to strain soften or harden).  The matrix 
flows in steady-state (i.e. x = 0, Fig. 1), with a stress 
exponent  n of about 3.8 (Fig. 2). Note that this is 
significantly higher than the calibrated value of 2.7 given 
in Mancktelow (1988b) for the same grade of paraffin 
wax (melting range 46-48°C) and reflects the unfortu- 
nate observation, as noted in that paper, that different 
batches from the same supplier can exhibit slightly 

Temperature:  26.1 + 0 .1 "C  
Side Stress: 0.030  + 0.001 MPa 

0 . 0 ]  Strain Rate:  3.00 + 0 , 0 0 5 x 1 0  "s s "1 

Layer 1 - ~ _  
~ 0.4 (MP58"60°C)  ~ 

0.2 ~ . ~ y e r  2 

Matrix (MP 46-480C) 

0.0 
0 1"0 2'0 3'0 

% Shortening 
Fig.  1. S t r e s s - s t r a i n  c a l i b r a t i o n  c u r v e s  f o r  t he  m a t r i x  (pa ra f f i n  w a x  o f  
melting range 46-48"C), the stiffer layer (Layer 1: paraffin wax of 
melting range 58--60"C) with yield stress ca 30 times the flow stress of 
the matrix, and for the less stiff layer (Layer 2: a mixture of these two 
waxes) with a yield stress ca 8 times the flow stress of the matrix. 
Calibration conditions are the same as experimental conditions for the 

scale models. 

different rheologies. It is imperative, therefore,  to cali- 
brate each batch under the same conditions as the 
experiments in question. The paraffin wax of melting 
range 58--60°C, used to construct the stiff layer, exhibits 
strong strain softening behaviour (Layer 1 in Fig. 1). For  
the range of strain relevant to the current experiments 
(e < 0.2), the strain sensitivity x = 3 (Fig. 3), and the 
stress exponent  is also around 3 (Fig. 4). Phenomeno- 
logically, the material is ductile, without any sudden 
stress drop associated with a through-going fault sur- 
face. In detail, however, the deformation occurs at least 
in part along numerous small dilatant fault surfaces. As 
developed theoretically by Neurath & Smith (1982), the 
effect of strain softening may be considered, to a first- 

Paraffin Wax MP48.48 Batoh ~/2 

n-3.8 n- . n n 

-4.5 

| 
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Log Strmm (Pam:al) 

Fig.  2. C a l i b r a t i o n  o f  the  s t ress  e x p o n e n t  fo r  the  m a t r i x  p a r a f f i n  w a x  o f  
melting range 46-48°(2. The good fit of straight lines to the log-log plot 
demonstrates that the power-law relationship between strain rate and 
stress is a reasonable approximation to the theology of this material. 
Note that the value of 3.8 is considerably higher than the value of 2.7 
obtained on a previous batch of the same grade of wax from the same 
supplier (Mancktelow 1988b), underlining the need to independently 

calibrate each batch under experimental conditions. 
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Fig. 3. Strain softening behaviour of  the paraffin wax of melting range 
58-60"C used to construct the stiff layer (Layer 1). The linearity of  this 
in-in plot is good at the low values of bulk shortening of interest in our 
fold analysis. At  higher bulk strains, beyond the range of  the current 
plot, the curves tend towards flatter slopes. All calibrations at a 

temperature of 26.1 +_ 0. I°C. 

order approximation, as equivalent to an increase in the 
effective power-law stress exponent, with the magnitude 
of this increase depending on the fold growth rate (see 
Part II, Mancktelow & Abbassi 1992). 

The strain softening behaviour of the layer results in a 
decreasing viscosity ratio between layer and matrix with 
increasing strain (Fig. 1). The maximum value, as given 
by the ratio between the yield stress of the stiffer layer 
and the steady state flow stress of the matrix, is around 
30:1 (Layer 1 in Fig. 1). One experiment was also 
performed in which the layer was a mixture of the 46-- 
48°C and 58-60°C waxes, such that the maximum visco- 
sity contrast between layer and matrix was only 8:1 
(Layer 2 in Fig. 1). This additional experiment allows a 
limited discussion on the influence of viscosity ratio on 
fold development. 

For most experiments, the matrix and layer of the 
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Fig. 4. Stress exponent of the stiff paraffin wax of melting range 
58--60"C. For each strain rate, the values of stress were read off from 
Fig. 3 at a standard strain state (natural strain in (LolL) = 0.10). The 
plot is approximately linear, with a stress exponent of ca 3, which is not 
significantly different from the calibrated stress exponent for the 

matrix wax. 

models were constructed independently (see below for 
details), such that cohesion between layer and matrix 
was minimized, approximating the 'easy-slip' condition 
generally assumed by Biot (e.g. Biot 1961). The confin- 
ing stress o3, applied to the side plates of the pure shear 
rig during deformation (Mancktelow 1988a), suppressed 
any tendency for separation between layer and matrix. 
A series of experiments were also carried out, in which 
the layer was poured as molten wax into a mould 
constructed of the already pre-shaped matrix. This pro- 
duced strong cohesion between matrix and layer (cf. 
Cobbold 1975) and allowed an experimental investi- 
gation of the influence of degree of bonding between 
matrix and layer, as discussed in detail below. 

Geometry of the initial perturbation 

Symmetric perturbations were introduced as bell- 
shaped forms corresponding to the equation 

b 
y(x)  = 2 1+(:) 

(cf. Blot etal. 1961) (Fig. 5). The amplitude b, measured 
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Fig. 5. (a) Initial perturbation geometry of mathematical form 
y(x) = b/[1 + (x/a)2]. The example given is for Pert C, with b = 2 mm 
and a = 20.37, givmg an average wavelength to the perturbation of 
128 mm, i.e. 32 times layer thickness for a 4 mm thick layer. Vertical 
scale is strongly exaggerated (150:1). (b) Cosine coefficients for the 
infinite Fourier series representing the curve in (a). The arrow points 
to the average wavenumber (lay = 0.049), which is taken to occur 

where the curve drops to lie of its maximum value. 
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at the central symmetry axis (where x = 0), was set at 
2 mm, and the layer thickness was maintained at around 
4 mm, such that the initial amplitude of the perturbation 
was always approximately half the layer thickness. The 
value of a controls the width of the bell-shape, and 
consequently also the position of maximum slope of the 
curve, which occurs at x = +(V3/3)a, with values of 
+ (3"V/3/8)b/a. Three values of a were used in our experi- 
ments (a = 5.09, 10.19 and 20.37 mm), corresponding to 
narrow (Pert A), intermediate (Pert B) and broad (Pert 
C) initial perturbations, with theoretical maximum limb 
dips of 14.3 °, 7.3 ° and 3.6 °, respectively. These initial 
maximum dip values occur at only a single point along 
each curve and are clearly not directly measurable from 
the photographs: the values measured from the models 
and used in the analysis below were somewhat lower, 
with values of 12 °, 5 ° and 3 °, respectively. 

In practice, moulds were first constructed with the 
correct mathematical shape using a numerically driven 
milling machine. Plaster of Paris was poured into these 
moulds to construct layers of the required thickness, and 
then impregnated with a fine epoxy spray to produce an 
impermeable non-stick surface. The layers were then 
slotted into rectangular moulds into which the molten 
wax for the matrix block was poured. For most experi- 
ments (the easy-slip experiments, see above), the layer 
was produced by planing of a separate block of higher 
melting point wax. The planar layer was then warmed 
and gently formed into the correct shape between the 
moulds used initially to construct the plaster layer. 
Layer and matrix could then be placed together during 
planing of the whole block to its correct dimensions and 
for inscription of the grid (of. Mancktelow 1988a). For 
the experiments where good bonding between layer and 
matrix was required, the steps were similar except that 
molten wax for the layer was poured directly into the 
space left by the plaster layer within the matrix block. 

Several experiments were repeated to check reprodu- 
cibility and these carry an additional identification num- 
ber (e.g. Pert C1). Initial model dimensions were always 
ca 29 cm long x 12cm wide x 6cm thick. Several 
additional experiments in which symmetric and asym- 
metric initial perturbations were compared have already 
been reported in Abbassi & Mancktelow (1990). 

Fourier analysis 

The initial perturbation introduced into the single 
layer is not sinusoidal and, therefore, does not have a 
single wavelength or amplitude. A distinction must be 
made between the 'amplitude' of the central non- 
sinusoidal 'fold' as measured from the photographs (e.g. 
Figs. 6--8) and the amplitude of the various sinusoidal 
components which can represent this isolated fold 
shape. The introduced bell-shaped curve can be written 
as a Fourier integral: 

I X)2 = ab e-al cos Ix dl. 
1 +  0 

If the wavenumber t is defined as l = 2zt/L, where L is 
the wavelength, then the 'average wavenumber' of the 
perturbation is given by lav = 1/a (Biot etal. 1961). In the 
Fourier representation, this is the wavenumber for 
which the amplitude of the cosine component is lie of 
the maximum value (i.e. able, where e = 2.7183, the 
natural log base). This implies that the average wave- 
length is Lay = 2~a. The selected initial perturbation 
shapes Pert A, B and C have Lay values of 8, 16 and 32 
times layer thickness, respectively. 

For discretely sampled data, as in the case of our 
digitized fold, the continuous and infinite Fourier in- 
tegral can be approximated by a discrete finite series of 
sine and cosine coefficients (cf. Mancktelow & Abbassi 
1992). For an even function, such as the bell-shaped 
curve, all sine coefficients should be zero. Due to imper- 
fections in preparation, however, there are always some 
non-zero sine coefficients in the starting shape. During 
deformation, individual Fourier coefficients grow at 
differing rates, allowing the construction of a curve for 
growth rate vs wavelength (or more conveniently, layer 
thickness/wavelength). The form of this curve depends 
on the material properties, and can be directly compared 
with results from current theories for buckle folding in 
non-linear materials (Mancktelow & Abbassi 1992). 

Measurement of layer parallel shortening 

As expected for the relatively low viscosity contrasts 
employed in our experiments, there is significant short- 
ening and thickening of the layer during fold develop- 
ment. To analyse this process, the layer parallel shorten- 
ing was determined by first fitting a tight cubic spline to 
the digitized central line of the fold to minimize the 
effect of digitizing error (Panozzo 1988), and then sum- 
ming along this line for the full length of the layer to 
obtain the arc length. The layer parallel shortening is 
then given by: 

% layer parallel shortening 

_ initial arc length - current arc length x 100. 
initial arc length 

This is clearly an average value along the full length of 
the layer. As folds develop to finite amplitude, however, 
the distribution of layer parallel shortening along the 
layer may become markedly heterogeneous, leading to 
hinge thickening and limb thinning and the development 
of 'flattened parallel folds' (e.g. Ramsay 1967, p. 411). 

EXPERIMENTAL RESULTS 

Influence of the span width of the initial perturbation 

Folding and fracture. Shortening of 40% can easily be 
achieved in the deformation rig employed, but for the 
higher viscosity contrast experiments (viscosity ratio 
~30), extension cracks invariably develop on the outer 
arcs of folds when the radius of curvature attains values 



S i n g l e  l a y e r  b u c k l i n g - - I  

Pert A 

Pert B 

0% 8% 

Pert C 
0% 8% 

0% 8% 

12% 16% 
Fig. 6. Photographic record of experiments which demonstrate the effect of initial perturbation width on fold geometry. The 
layer thickness was in each case c a  4 mm and the viscosity ratio between layer and matrix 30:1. The interface between layer 

and matrix was unwelded, promoting easy slip. Values of bulk shortening are indicated below each photograph. 
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Pert B welded interface 

0% 
Fig. 7. Photographs of an experiment which demonstrates the effect of bonding between layer and matrix. Conditions were 
the same as for Pert B in Fig. 6 except that the layer was welded to the matrix to minimize slip on the interface (see text for 
details of the construction method). Note the much lower rate of growth for the central antiform and the correspondingly 

greater amount of layer parallel shortening and layer thickening when compared to Pert B in Figs. 6 and 9. 

Pert D viscosity ratio = 30 

16% 

Pert D viscosity ratio = 8 
0% 4% 

0% 6% 

upper surface 38% 

38% 
Fig. 8. Photographs of experiments showing the influence of viscosity ratio. Pert D is similar to Pert A (Fig. 6), except that 
the central amplitude is only i mm instead of 2 mm. Note the much slower growth rate of the central fold in the lower 
viscosity ratio experiment, the greater layer parallel shortening and thickening and the much reduced zone of contact strain. 
The two lower photographs were taken at the same percentage bulk shortening: that to the right shows the surface of the 
layer looking down on the folded layer from above. Note the subsidiary non-cylindrical folds developed away from the 

central perturbation. 
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less than about 1.2 times the layer thickness. Fracture 
initiation occurred at around 5% bulk shortening for 
Pert A, 8% shortening for Pert B and 16% shortening 
for Pert C. This effect largely reflects the difference in 
the initial radius of curvature of the introduced pertur- 
bations: broader perturbations (e.g. Pert C) shorten 
more before the critical value of 1.2 is overstepped. 
Layer parallel shortening, which is more pronounced for 
the broader perturbations (see below), may also have an 
important influence. Layer parallel shortening tends to 
counteract the tendency for extension on the outer arc of 
buckle folds (cf. figs. 21.25 and 21.26 from Ramsay & 
Huber 1987) and, therefore, to suppress the develop- 
ment of extensional cracks. This effect is even more 
strongly developed for low viscosity contrast between 
matrix and layer: the experiment with viscosity ratio of 

only 8:1 underwent 38% shortening without failure 
(Figs, 8 and 23). Similarly, in the experiment with a 
viscosity contrast of 30:1 but with welded layer-matrix 
contacts, significant layer parallel shortening was ob- 
served, and 38% bulk shortening was again possible 
without failure (Figs. 7 and 19). 

Fold location and shape. As is clear from Figs. 6-9, the 
presence of an initial perturbation determines the loca- 
tion of the developing fold and exerts a strong influence 
on the fold shape. A narrower initial perturbation re- 
suits in a narrower final fold shape. This effect is seen 
particularly clearly from plots of the cosine coefficients 
of the Fourier series representing each fold shape (Fig. 
13). Although the material properties and strain geo- 
metry are the same in each case, the position of the 
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1 . 6 % ~ - ' '  . . . . . . . . . . . . . . . . . .  ~ : : :  : : : : : : : : : : : : : : : : : : : : : : r :  
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5.4% : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  
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Fig. 9. Fold geometry developed in single layers from initial perturbations of three different span widths. For Pert A, the 
average wavelength to layer thickness value was 8; for Pert B, 16; and for Pert C, 32. The layer thickness in each case was 

c a  4 mm, the central amplitude of the perturbation, c a  2 ram, and the viscosity ratio between matrix and layer, 30:1. 
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component of maximum amplitude is different for each 
initial perturbation: for a narrower perturbation (e.g. 
Pert A) it always occurs at a shorter wavelength than for 
a broader perturbation (e.g. Pert C), reflecting the 
influence of the initial perturbation shape even to large 
finite amplitudes. 

Fold ampli tude and  limb dip. T h e  amplitude of the 
central antiform (normalized against the initial ampli- 
tude A0) is presented for each of the three initial pertur- 
bation shapes in Fig. 10(a), together with the amplitude 
of the flanking synforms which develop during the 
experiments. If the natural logarithm of the normalized 
amplitude is plotted against logarithmic strain, then the 
slope at a specific strain will represent the instantaneous 
growth rate (cf. Smith 1979, Neurath & Smith 1982). 
The results are presented in Fig. 10(b), where it is seen 
that the growth rate is at least approximately constant at 
low bulk shortening (e < ca 0.08), but then decreases. 
For the same bulk shortening, the amplitude of the 
central antiform for the narrow perturbation Pert A is 
always greater than for Pert B and C and this is reflected 
in the growth rates: Pert A has a growth rate of ca 25, 

Ampl i tude 
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t'1" • Pert A 
a 

4 • Pert B ~ J I  
101 m PertC / A n t l f o r m  

6 
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a ~  ) 0 5 10 15 20 
% Shortening 

Growth Rates 
2.5 

/ 

o.oo 0.05 o.1o o.15 0.20 
D /  s . * .  - , .  (LA.o) 

Fig. 10. (a) Normalized amplitude A/A o vs percentage bulk shortening 
of the model for the initial central antiform and for the flanking 
synforms which develop during progressive folding, where .4o is the 
initial amplitude of the perturbation. (b) In (A/Ao) vs In (LolL), i.e. 
-e, the natural or logarithmic strain. The slope of such a curve gives 
the 'growth rate' of the fold at any specific strain (ef. Neurath & Smith 
1982, Abbassi & Mancktelow 1990). Pert A has an initial growth rate 
of ca 25, whereas Pert B and Pert C both have growth rates of ca 16. 

80' 

80' 

70' 

6 0 '  
o 

o .  

~ 8 0 ,  
J D  

E40,  

30' 

2 0  

10~ 

a) 

Umb Dip 

. . . .  , . . . .  , . . . .  , - . . 

5 10 15 
% Shortening 

20 

5- 
U m b  Rotat ion 

.9- Q 

_c --/w ~n~'~radlent - 25 • Pert A 
A . ~  A P,,rt A1 

2 F ~ D  • PertB 
• Pert C 
I: Pert C1 

1 . . . .  , . . . .  , . . . .  , . . . .  

0.00 0.05 0.10 0.15 0.20 
D )  Str.I. -,. (~-o) 

Fig. 11. (a) Plot of limb dip (in degrees) against percentage bulk 
shortening of the model. (b) Plot of In (limb dip in degrees) against 

In (LolL). 

whereas Pert B and C have similar growth rates of 
around 16. 

Similar plots to those for amplitude and amplitude 
growth rate can be constructed for the limb dip and rate 
of limb rotation (Fig. 11). Because the different initial 
perturbations have different initial limb dips, the curves 
are displaced relative to each other, but the initial 
rotation rates are basically identical with a value around 
25. Duplicate experiments (Pert A1 and C1) in Fig. 11 
demonstrate the excellent reproducibility of the results. 
The similarity in form of Figs. 10(a) and l l (a )  suggests a 
simple relationship between normalized amplitude and 
limb dip: the plot in Fig. 12 confirms this and shows that 
it is effectively linear. 

As noted earlier, a distinction should be made be- 
tween the amplitude of the fold developed from the 
initial isolated perturbation, which is not a regular 
periodic structure with a single wavelength, and the 
amplitude of the sinusoidal Fourier components which, 
on superposition, can represent the observed layer 
shape. The Fourier cosine coefficients for each of the 
initial perturbation shapes (Pert A-C),  plotted against 
layer thickness/wavelength (h /L ) ,  are presented in Fig. 
13. The distribution for the initial bell-shaped curve is 
exponential, decreasing towards shorter wavelengths 
(i.e. larger wavenumbers). This distribution is rapidly 
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Fig. 12. Plot of limb dip vs normalized amplitude of the central fold 
A/Ao. The plot indicates an approximately linear relationship but with 
different intercepts reflecting the differing initial limb dips of the 

perturbations. 
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modified during deformation, since the rate of dynamic 
amplification varies with wavelength during buckling 
folding (e.g. Biot 1961, Biot et al. 1961). The growth 
rates of the individual Fourier cosine components de- 
rived directly from Fig. 13 are plotted in Fig. 14. The 
best-fit polynomial curve has a broad maximum around 
0.10 for the layer thickness/wavelength, that is a domi- 
nant wavelength of around 10 times layer thickness. 
Neither the dominant wavelength nor the maximum 
growth rate are significantly influenced by the initial 
perturbation shape. The material properties alone (in- 
cluding the degree of bonding between layer and matrix, 
see below) determine these values, as expected theoreti- 
cally (e.g. Biot 1961, Fletcher 1974). 

It is important to note that the Fourier component of 
maximum amplitude in Fig. 13 is not the wavelength 
with the maximum growth rate (i.e. the dominant wave- 
length) (Fig. 14), due to the unequal distribution of 
amplitudes to the Fourier components in the initial 
perturbation shape. The growth rate of the dominant 
wavelength component as determined by such a Fourier 
analysis is considerably greater than the growth rate for 
the central antiformal fold as measured directly from the 
photographs (Fig. 10b). 

Fold wavelength. It is clear from Figs. 13 and 14 that, 
although the dominant wavelength of maximum growth 
rate may remain unaltered for the various initial pertur- 
bation shapes, the wavelength component of maximum 
amplitude in the Fourier series is very different for Pert 
A, B and C. For the narrowest initial perturbation, Pert 
A, the maximum is initially at longer wavelength than 
the dominant wavelength value (i.e. lower layer 
thickness/wavelength values), but moves towards the 
dominant wavelength with increasing strain, so that for 
e = 0.083 the component of maximum amplitude is only 
of slightly longer wavelength than the dominant wave- 
length. With increasing span of the initial perturbation 
(Pert B and C), the displacement of the maximum 
amplitude component towards longer wavelength is 
more and more marked, and the tendency to approach 
the dominant wavelength with increasing strain less 
pronounced. Similar results were obtained in the finite 
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Fig. 13. Cosine coefficients for the discrete Fourier series with increas- 
ing bulk shortening. Note that a Fourier series derived from discrete 
data must itself be discrete, with an interval between values deter- 
mined solely by the length of the digitized layer (see Appendix in Part 
II, Mancktelow & Abbassi 1992); it is not a continuous function. The 
curves through these discrete values are intended as a visual aid, 
linking related coefficients determined from the same fold shape at a 
particular bulk strain. The curves do not in themselves have any 
physical significance. The values of the coefficients are not normalized 
against the total number of data points, but as this number is the same 
for (a)-(c),  direct comparison between the plots is still possible. 
(a) Results from experiment Pert A. The wavelength of maximum 
amplitude at e = 0.083 occurs at around 11 times layer thickness, as far 
as interpolation between the discrete values is valid (see note above). 
(b) Results from experiment Pert  B. The wavelength of maximum 
amplitude at e = 0.109 occurs at around 15 times layer thickness. 
(c) Results from experiment Pert C1. The wavelength of maximum 

amplitude at e = 0.139 occurs at around 22 times layer thickness. 
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Fig. 14. Summary of growth rates for individual Fourier cosine 
coefficients, determined from all experiments with differing widths of 
the initial perturbation but the same material properties (viscosity 
ratio = 30:1). Growth rates are plotted against inverse normalized 
wavelength (thickness/wavelength = 2~s, where s is normalized wave- 
number). Each experiment provides two sets of results (for left and 
right sides of the fold). Considering the accumulated error of the 
several steps involved (digitization of layer shape, calculation of 
Fourier series, determination of growth rate of individual Fourier 
cosine coefficients with increasing strain by least-squares regression), 
the scatter in results is moderate. The scatter increases towards higher 
layer thickness/wavelength, largely due to increased relative errors in 
these very low magnitude Fourier coefficients. The solid line is a best- 

fit fifth-order polynomial to all the data. 

element numerical models of Williams et al. (1978). The 
results confirm the observation of Blot (1961) that the 
establishment of a dominant wavelength independent of 
the initial perturbation shape requires a certain total 
amplification (amplification increasing with bulk short- 
ening). The results also demonstrate that the influence 
of perturbation shape on the final fold shape is greatest 
for initial perturbations which are broad compared to 
the dominant wavelength (Williams et al. 1978). 

Layer parallel shortening. Plots of the layer parallel 
shortening and the rate of layer parallel shortening 
against bulk shortening, as well as the relationship 
between layer parallel shortening and limb dip are 
presented in Fig. 15. For these parameters, the reprodu- 
cibility of the repeat experiments (Pert A and A1, Pert C 
and C1) is again good. At low fold amplitudes and limb 
dips, the initial rate of layer parallel shortening with bulk 
shortening always approaches one (i.e. all shortening is 
accommodated by layer parallel shortening, cf. Ram- 
berg 1964), irrespective of the differing perturbation 
geometries (Figs. 15a & b). This constant rate near I for 
the first 1-2% of bulk shortening is within the elastic 
range of layer and matrix (Fig. 1). With the onset of 
viscous flow, the rate progressively decreases until it 
approaches zero at around 30-40 ° limb dip, where all 
shortening is accommodated by buckling (Figs. 15b & 
c). Similar results were obtained for single layer fold 
experiments using linear viscous materials by Hudleston 
(1973). 

Zone of contact strain. If contact is maintained be- 
tween layer and matrix, folding will result in a zone of 
heterogeneous strain within the matrix to either side of 
the layer, which diminishes in magnitude with distance 
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Fig. 15. (a) Percentage layer parallel shortening vs percentage bulk 
shortening. (b) Gradients of the best-fit curves to the data in (a), i.e. 
the rate of layer parallel shortening relative to bulk shortening. 

(c) Percentage layer parallel shortening vs limb dip in degrees. 

from the layer interface (cf. the horizontal grid lines in 
Figs. 6-8). As noted by Ramberg (1961), this zone of 
contact strain can be clearly visualized by considering 
the additional heterogeneous displacementcomponents 
over and above the background homogeneous flow. 
This perturbation vector displacement field can be calcu- 
lated from the digitized grid nodes (Mancktelow 1991) 
and is presented for Pert B at 14.8% shortening in Fig. 
16. The perturbation field forms closed cells with up- 
ward displacements in the core of the central antiform 
and compensating downward displacements to either 
side, leading to steadily amplifying flanking synforms 
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Fig. 16. Perturbation vector displacement field for Pert B at 14.8% bulk shortening, showing perturbation 'flow cells' 
related to the zone of contact strain developed to either side of the layer. 
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and thus to the sideways spread of folding along the layer 
(Cobbold 1975, Lewis & Williams 1978). The pertur- 
bation flow is effectively parallel to the axial plane of the 
symmetric central antiform at the fold hinge (Fig. 16) 
(Ramberg 1961). A plot of the perturbation displace- 
ment component parallel to the axial plane (i.e. the Y 
direction in Fig. 16), measured away from the central 
antiformal hinge and normalized against the value Y0 of 
the layer interface itself, provides a good indication of 
the form and width of the contact zone (Fig. 17) (cf. fig. 3 
from Ramberg 1961). It is seen from Fig. 17 that the 
width of the zone is dependent on the initial span of the 
perturbation, increasing as the breadth of the initial 
perturbation increases. For sinusoidal waves, Ramberg 
(1961) suggested that the zone of contact strain should 
be approximately equal to the fold wavelength. For an 
isolated perturbation, there is no single characteristic 
wavelength, but the width of the zone is approximately 

Contact Strain Effects 
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Fig. 17. Plot of the Y component of the perturbation vector displace- 
ment along the axial plane of the central fold, normalized against the 
value for the layer boundary, for Pert A, B and C at similar values of 

bulk shortening. 

equal to the wavelength of maximum amplitude in the 
Fourier series representation (Fig. 13, for Pert A 
Lmax ~ 11, for Pert B Lmax~ 15, and for Pert C 
Lmax ~ 22 times layer thickness). It can be seen from 
Fig. 17 that, on the inner arc of the fold, the perturbation 
displacements in the Y direction go through negative 
values (i.e. displacements in the opposite direction to 
the fold hinge) before finally approaching zero. This 
effect reflects the concentration of buckle folding, and 
therefore shortening of the layer, about the position of 
the initial perturbation. This concentration of strain in a 
central region results in a displacement distribution as 
shown by the deformed grid in Fig. 18, which is super- 
imposed on the effects due to buckling alone. The 
additional heterogeneous strain effect will tend to in- 
crease the displacements on the outer arc (more positive 
values in Fig. 17) and decrease the displacements on the 
inner arc, leading to a steeper curve with distance from 
the layer and eventually to negative values, before 

Fig. 18. Sketch of the effect of strain concentration in the central 
region on the shape of an originally square grid deformed under 

constant volume, pure shear boundary conditions. 

SG 14:1-F 
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Fig. 19. Fold geometry developed in a single layer with identical experimental parameters to Pert B in Figs. 6 and 9, except 
that the matrix-layer interface has been welded to minimize slip. 

finally approaching zero as both effects diminish towards 
the model boundaries. 

Influence of matrix-layer bonding 

The experiment with strong bonding between layer 
and matrix shows much slower amplification of the 
central perturbation and more homogeneous defor- 
mation of layer and matrix than the corresponding 
experiments in which bonding between layer and matrix 
was minimized (compare Pert B Fig. 6 with Fig. 7, also 
Figs. 19-21). This is reflected in the greater amount of 
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Fig. 20. Effect of layer-matrix bonding. Comparison between experi- 
ments with the same initial geometry and material properties, except 
that the contact was either welded or free to slip. (a) Normalized 
amplitude A / A  o vs percentage bulk shortening of the model for the 
initial central antiform and for the flanking synforms which develop 
during progressive folding. (b) Limb dip (in degrees) vs percentage 

bulk shortening. 

layer parallel shortening in the layer compared to easy- 
slip experiments (Fig. 22). Indeed, the geometry is more 
similar to the low competence contrast experiment of 
Fig. 23 than to the easy-slip experiments with the same 
viscosity contrast. There is some risk that the construc- 
tion method for the well bonded model may have modi- 
fied the material properties of layer and adjacent matrix, 
such that the effective viscosity contrast was truly lower. 
The layer was formed by pouring molten wax into a 
mould formed by the already cooled matrix. As the layer 
was only 4 mm thick, diffusion between the initially 
molten layer wax and the surrounding matrix cannot be 
excluded. Models kept for long periods (several 
months), particularly at elevated temperatures, do in- 
deed show evidence for diffusion. This is seen as a halo 
of the candle wax dye used to highlight the layer in the 
adjacent matrix: no such diffusion of the dye was ob- 
served during construction of the well-bonded model. A 
more difficult effect to quantify may be the influence of a 
possible change in microstructure of the crystalline wax 
in the matrix adjacent to the layer. Recrystallization of 
the wax immediately adjacent to the layer due to 'con- 
tact metamorphism' may lead to larger grainsizes and 
different rheological behaviour. 

Influence of viscosity contrast 

As expected from theoretical considerations and 
earlier scale model studies (e.g. Hudleston 1973), the 
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Fig. 21. In (limb dip in degrees) vs natural strain plot, indicating the 
rate of limb rotation for the two experiments with welded or free-slip 
contacts, and emphasizing the significant influence of the degree of 

bonding. 
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Fig. 22. Plot of layer parallel shortening against hulk shortening for the 
welded and unweided contacts. Note the far greater layer parallel 

shortening undergone in the experiment with welded contacts. 

experiment in which the viscosity contrast was only 
around 8:1 shows a much lower growth rate for the 
central antiform and much greater layer parallel short- 
ening compared to the higher viscosity ratio experiments 
with similar initial perturbation geometry (Figs. 23-26). 
At high values of bulk shortening and layer parallel 
shortening, there is a progressive development of addi- 
tional small 'folds' independent of the central initial 
perturbation. In three dimensions, on the surface of the 
layer, these are seen to be distinctly non-cylindrical (Fig. 
8), probably reflecting the amplification of (uninten- 
tional) small irregularities distributed unevenly across 
the layer, as well as the effects of uneven friction on the 
upper and lower surfaces of the model. As the transfer of 
shortening from one non-cylindrical fold to another 
involves additional strains within the layer, it is reason- 
able to expect such geometries will become more signifi- 
cant at lower viscosity contrast between layer and 
matrix, as is observed in our experiments. 

Hinge and inflection points 

At very low fold amplitudes during the process of 
wavelength selection, hinge rolling and displacement of 
the inflection points through material points within the 
layer may occur (e.g. Chapple 1968). Once the folding is 
sufficiently advanced that these positions can be 
measured from the photographs with any confidence, 
however, their position remains effectively fixed to the 
same material points during subsequent fold amplifi- 
cation. 

Finite strain distribution 

For a viscosity contrast of 30:1 and unwelded easy-slip 
contacts between matrix and layer, the strain within the 
layer closely approximates that for tangential longitudi- 
nal strain (fig. 7-63 of Ramsay 1967). The lines of the 
initially rectangular grid, which were inscribed parallel 
and perpendicular to the layer boundary, remain paral- 
lel to the infinitesimal stretching axes throughout the 
deformation and, therefore, maintain the original 90 ° 
angles between the grid lines (Fig. 9). The finite strain 
axes within the layer thus remain perpendicular or 
parallel to the layer-matrix interface, leading to a strong 
refraction of the strain trajectories across this interface 
and the development of a low strain triangular zone on 
the outer arc of the folds (Fig. 27a). This spinning 
coaxial deformation history is to be expected (Lister & 
Williams 1983), since the easy-slip interface cannot 
support a shear stress and effectively functions as a free 
boundary. From the point of view of the stiff layer, the 
interface will also approximate a free boundary when 
viscosity contrasts between layer and matrix are high. 
The shear stress which can be supported in the weak 
matrix adjacent to the layer is, in this case, insignificant 
compared to the viscosity of the layer itself, and will 
produce only negligible shear strain rates within the 
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layer parallel to the layer boundary. The distinction 
between easy-slip and welded boundaries should, there- 
fore, become less important at high viscosity ratios 
between layer and matrix (cf. fig. 5 in Part II, Manckte- 
low & Abbassi 1992). In contrast, for welded contacts 
and low to moderate viscosity ratios (<50), where a 
significant shear stress can be transmitted across the 
interface, there is a more important component of layer 
parallel shear, the lines of the grid do not remain 
perpendicular, and refraction of the strain trajectories is 
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Fig. 25. Growth rates of the central antiformal fold for the two 
viscosity ratios. 
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Fig. 26. Plot of layer parallel shortening against bulk shortening for the 
two viscosity ratios. Not unexpectedly, the layer parallel shortening is 

much greater in the experiment with low viscosity contrast. 

less marked (Figs. 19 and 27b). This effect is even more 
strongly developed at very low viscosity contrasts (e.g. 
only 8:1 in Figs. 23 and 27c). 

DISCUSSION 

Fold geometry 

At low amplitudes and limb dips, the assumption of 
independent and constant growth for each of the Fourier 
components comprising the fold form is valid to a good 
first-order approximation (e.g. Chapple 1968; fig. 7 in 
Part II, Mancktelow & Abbassi 1992). Folding can then 
be treated as the imposition of a single growth rate 
curve, as determined by the material properties, on the 
original amplitude distribution of components present in 
the initial perturbation shape. This approach is followed 
in Fig. 28, where the theoretical growth rate curve (Fig. 
28a) was calculated using the equation derived indepen- 
dently by Fletcher (1974) and Smith (1979), with 
material properties such that the maximum growth rate 
occurs at Ld/h = 10 (or h/Ld = 0.1), where Ld is the 
'dominant wavelength'. These growth rates were then 
applied to bell-shaped perturbations with average wave- 
lengths of 1/2Ld, Ld and 2Lo, for logarithmic strains of 
e = -0.05 and -0.10, and the results plotted in Figs. 
28(b)-(d). In all cases, the wavelength component of 
maximum amplitude is longer than the 'dominant wave- 
length' of maximum growth rate, Ld, with the difference 
decreasing with increasing amplification. 

As can be seen from plots of the maximum amplitude 
wavelength component vs strain in Fig. 29(a), the effect 
is most marked for broad initial perturbations (larger 
average wavelength Lay), but it is still seen for the 
perturbation with an initial average wavelength of only 
0.5Ld (Lay = 5). This is because the amplitude of the 
components in an isolated bell-shaped perturbation de- 
crease exponentially with decreasing wavelength, with 
the maximum amplitude at infinite wavelength (wave- 
number h/L = 0). The components on the long wave- 
length side of the average wavelength will always be of 
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greater amplitude, and will, therefore, always tend to 
shift the position of the maximum amplitude component 
in the fold packet towards the long wavelength side. The 
curves in Fig. 29 tend to be asymptotic, such that even at 
large total amplifications (high strain in Fig. 29a, high 
viscosity ratio in Fig. 29b), the influence of the initial 
perturbation on the final shape is never entirely elimi- 
nated. This is particularly noticeable when the initial 
perturbation was broad compared to the dominant 
wavelength. The theoretical curves of Fig. 29 also indi- 
cate that, for low total amplification, the maximum 
amplitude wavelength component always tends to infin- 
ity, which is the maximum amplitude component in the 
initial isolated perturbation. The theoretical dynamic 
fold growth rates in Fig. 28(a) are always positive and 
tend to zero for infinite wavelength (i.e. h/L = 0), such 
that the total growth rate approaches the kinematic 
value of 1. Long wavelengths will, therefore, also 
amplify during folding, but much more slowly than those 
wavelengths close to the dominant wavelength, and it 
will require a certain finite amplification before the 
original exponential distribution is overwhelmed and a 
new peak away from h/L = 0 develops (e.g. Figs. 28d 
and 29). Fourier analysis of the model experiments, as 
summarized in Figs. 13 and 14, produces results which 
differ somewhat from these theoretical predictions. 
Negative growth rates at very long wavelengths 
(h/L ~ 0) are observed (i.e. amplitude decreases with 
increasing strain, cf. Smith 1979), resulting in a more 
rapid suppression of the long wavelength components 
and a correspondingly more rapid development of a 
separate peak at shorter wavelength. This peak itself, 
however, behaves as predicted from Fig. 29: its position 
changes little with increasing strain, particularly for 
broad initial perturbation shapes (reflecting the asymp- 
totic behaviour of the curves in Fig. 29a), it is always 

developed at a longer wavelength than the expected 
dominant wavelength, and its position occurs at longer 
wavelengths for broader initial perturbations. 

The amplified Fourier components can be used to 
construct the form of the theoretical fold shape for direct 
comparison with the observed shape (Part II, Manckte- 
low & Abbassi 1992), and thus also to determine the 
growth rate of the central antiform of the fold packet 
(Fig. 10) (Blot et al. 1961). A plot of this growth rate for 
various average wavelengths Lay of the initial pertur- 
bation is given in Fig. 30, using material properties 
similar to those of our experiments. For these specific 
properties, the dominant wavelength is 8.3 times layer 
thickness and the maximum growth rate associated with 
this wavelength is 27.8. From Fig. 30, it is immediately 
obvious that the growth rate of the central antiform will 
be a function of the initial perturbation shape. The 
maximum growth rate is considerably less than that of 
the dominant wavelength, and occurs for a Lay value 
slightly less than the dominant wavelength. For still 
shorter Lay , the growth rate of the central antiform 
decreases rapidly, for larger values it decreases more 
steadily. This effect can be understood by studying Fig. 
28, comparing the growth rate curve (a) with the initial 
perturbation distributions (b)-(d). For very broad per- 
turbations (e.g. d), most of the initial components lie to 
the left of the maximum growth rate (in this case, at layer 
thickness/wavelength = 0.1) and are therefore amplified 
more slowly than the maximum rate. For narrower 
perturbations (e.g. b and c), the initial curve spreads to 
shorter wavelengths and more components lie within the 
high growth rate band, leading to a higher overall 
growth rate for the perturbation but never attaining the 
maximum growth rate possible for a sinusoidal wave. If 
the perturbation becomes too narro~v, however, more 
and more of the components will lie to the right (i.e. the 
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short wavelength side) of the maximum growth rate, and 
the growth rate of the perturbation will diminish rapidly 
as is indeed seen in Fig. 30. 

Layer parallel shortening 

At very low fold limb dips, the layer is everywhere 
effectively parallel to the principal shortening axis xt, 
and the strain rate kLt in the layer must be approximately 
equal to the strain rate imposed at the boundaries, i.e. 
~L1/ktl ~ 1 (e.g. Hudleston 1973, 1986). As the limbs 
rotate due to the buckling instability, less shortening 
occurs in the layer than in the surrounding matrix or is 
applied at the boundaries i.e. kLi/ktl < 1. This is the 

basic driving mechanism for buckle folding, namely the 
preferential partitioning of strain from the stiffer layer 
into the weaker matrix; if ~lLt/~tt remained = 1, there 
could be no buckling instability, only kinematic amplifi- 
cation due to homogeneous strain. 

Eventually, at limb dips of around 30--40 ° , layer paral- 
lel shortening effectively ceases (Fig. 15c). As the differ- 
ent initial geometries attain this 30--40 ° limb dip value at 
different values of bulk shortening, the maximum layer 
parallel shortening attained is different from one pertur- 
bation shape to another. The narrow perturbation Pert 
A, with an initial limb dip of 12 ° is shortened less than 
4%, whereas the broadest perturbation Pert C, with an 
initial limb dip of 3 °, reaches a maximum value of 6.5- 
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7% layer parallel shortening. This consistent increase in 
the importance of layer parallel shortening with pertur- 
bation width is qualitatively predictable from equation 
(7) of Ramberg (1964), which indicates that, for any 
specific (linear viscous) material properties and a regular 
sinusoidal fold form, the ratio of shortening due to 
buckling relative to homogeneous layer parallel shorten- 
ing will be directly proportional to (A/L) 2, where A is 
the amplitude and L the wavelength of the fold. Broader 
initial perturbations with longer average wavelength 
should, therefore, experience more layer parallel short- 
ening than narrower perturbations of the same ampli- 
tude, as is indeed observed in the experiments. 

As the folds amplify further, limb dips can exceed 45 ° , 
placing them in the field of incremental extension for the 
basic flow, such that extension in the limbs can counter- 
act continued shortening in the hinges. As the dynamic 
amplification decreases (Fig. 10b), continued kinematic 
amplification will eventually produce hinge thickening 
and limb thinning, leading to typical 'flattened parallel 
folds' approaching a similar-style geometry (e.g. Ram- 

say 1967, p. 411) and resulting in a progressive increase 
in the total arc length measured along the folded layer. 

Not only the shape, but also the spacing of initial 
perturbations may influence the amount of layer parallel 
shortening which accompanies folding. As has been 
observed in both current experiments and in those of 
Cobbold (1975), the location of fold packets is deter- 
mined by the location of the initial perturbations. If 
perturbations are closely spaced, folding can initiate at 
many sites simultaneously and much of the total shorten- 
ing can be accommodated by buckling. In contrast, if the 
perturbations are very widely spaced, there are few fold 
initiation sites, and shortening in the layer must be 
transferred over considerable distances if it is to be 
accommodated by buckling. As discussed in more detail 
below, the degree of bonding between layer and matrix 
will then become crucial in determining if shortening is 
accommodated locally by layer parallel shortening or if 
it is transferred to sites of isolated folding by relative slip 
along the layer-matrix interface. 

Sherwin & Chapple (1968) developed an extension of 
the theoretical analysis of Biot (1961, 1965) to include 
the effects of layer parallel shortening. They implicitly 
assumed, however, that the strain rate in the layer and 
matrix remain the same during folding to finite ampli- 
tudes, i.e. ~L 1 = ~11. AS discussed above, this is only 
instantaneously true at fold initiation (Fig. 15). In gen- 
eral, as noted by Biot (1965, pp. 425--428), finite strain 
will result in a shortening of wavelengths (related to the 
strain rate of the basic flow parallel to the layer ~H, as 
applied at the model boundaries) and a thickening of the 
layer itself (related only to the layer parallel shortening 
component ~L1). As can be seen from Fig. 15, the layer 
parallel shortening is a function of the bulk shortening 
eL1 =f(e11). If this function is known and sufficiently 
simple, an analytical solution for amplification vs wave- 
length may be possible. Usually, a numerical solution is 
required. Such a numerical solution, which includes 
layer parallel shortening as measured experimentally 
(e.g. Fig. 15), is discussed in Part II (Mancktelow & 
Abbassi 1992). These results confirm the observation of 
Biot (1965, p. 427) that the effects of layer thickening 
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and wavelength shortening tend to counteract one 
another and that the influence of these finite strain 
effects on the low-limb dip fold geometry is not great. 
However, continued layer parallel shortening to large 
finite values, such as are typical of folding with low 
viscosity contrast between layer and matrix (cf. Fig. 26), 
will eventually modify fold shapes to characteristic 
cuspate-lobate forms (e.g. Ramsay & Huber 1987, fig. 
19.14). 

Layer-matrix bonding 

The experimental results show a strong dependence of 
fold development on the degree of bonding between 
layer and matrix. For the easy-slip experiments, short- 
ening accrues largely by buckle folding with only a 
minor, though significant, component of layer parallel 
shortening. The buckling component, however, is re- 
stricted to the central region around the initial pertur- 
bation and is not evenly distributed along the layer. 
Detachment between layer and matrix along the easy- 
slip interface allows a transfer of shortening to this 
central region, much as detachments in nature allow 
transfer of strain from one location to another (e.g. low- 
angle decoUrments). The outer segments of the layer 
away from the central perturbation are driven in as 
straight 'pile drivers' towards the central region, where 
the shortening of the layer as a whole is accommodated 
locally by buckling. If the rate of bulk shortening cannot 
be fully accommodated by buckling with a growth rate as 
determined by the material properties, then the addi- 
tional strain must be accommodated by layer parallel 
shortening. 

The hinge point of maximum amplitude of the pertur- 
bation (cf. Fig. 5) does not slip relative to the adjacent 
matrix. It acts as a pin point, or 'spot weld' along the 
layer, preventing further transfer of shortening along 
the detachment and thus concentrating the buckling 
strain about this point. By analogy, it is clear that 
variation in the degree of bonding along a layer may also 
act as an irregularity leading to fold nucleation. If the 
initial irregularities are widely spaced, the amount of 
shortening transferred to each fold packet from the 
adjacent, detached, planar layer will be large. There will 
be a strong spatial variation along the layer in the 
amount of shortening accommodated by buckling and a 
corresponding spatial variation in the perturbation 
strain in the adjacent matrix (Fig. 16). If perturbations 
are closely spaced, the transfer will occur over a smaller 
distance and the total shortening of the layer will be 
accommodated more homogeneously. If the spacing is 
very close, then all the shortening can be accommodated 
locally and there will be little transfer of strain along the 
layer. As each hinge acts as a pin point, it is clear that for 
closer and closer spacing, the distinction between well- 
bonded and free-slip boundaries is reduced and may 
become insignificant: this is the geometry considered by 
Biot (1959) and Smith (1975), who showed theoretically 
that, in this case, the difference in behaviour between 
flee-slip and no-slip boundaries should not be large 

and should become insignificant at higher viscosity 
contrasts (cf. fig. 5 in Part II, Mancktelow & Abbassi 
1992). 

It follows that, for low to moderate viscosity contrasts 
between layer and matrix, there will be an interrelation 
between the degree of bonding, the spacing of initial 
perturbations, and the amount of layer parallel shorten- 
ing. If the degree of bonding is very high, no transfer is 
possible and perturbation amplification is completely 
local and driven by the strain rate of the bulk defor- 
mation. In regions where the initial perturbation ampli- 
tudes were small and limb dips correspondingly low, the 
strain must be accommodated largely by layer parallel 
shortening (see Fig. 15b). If the degree of bonding is 
very weak, the shortening of the layer can be transferred 
by displacement of the layer relative to the matrix, with 
detachments occurring to either side of the layer (i.e. 
layer parallel slip). The growth rate of individual fold 
packets will then depend to some extent on the spacing 
of the larger irregularities. 

The degree of bonding between matrix and layer may 
increase with increase in metamorphic grade, as crystal- 
lization of new mineral phases and grain growth act to 
weld layer boundaries. Certainly the best examples of 
flexural slip folding, involving discrete slip between 
layers, are known from low metamorphic grade regions 
(e.g. Tanner 1989). This tendency to increased welding 
of contacts, and its corresponding influence on growth 
rates and layer parallel shortening during folding, may 
be one factor in explaining the preponderance of 
cuspate-lobate fold geometries, indicative of low 
growth rates and significant layer parallel shortening, in 
moderate to high metamorphic grade terrains (e.g. fig. 
19.16 from Ramsay & Huber 1987). 

Comparison with a sinusoidal fold of  constant arc length 

Several features of the finite-amplitude folding ob- 
served in the experiments can be effectively discussed by 
comparison with the geometry of a sinusoidal of con- 
stant arc length. From the curves in Fig. 31, it is seen that 
the initial amplification rate of such a sinusoidal fold is 
infinite, but decreases rapidly as the limbs rotate with 
increased shortening. The amplification rate due to 
buckling instability is, however, always finite. It follows, 
as noted from the experiments discussed above, that the 
layer must initially undergo layer parallel shortening at 
the same rate as that imposed on the boundaries (Fig. 
15b). The layer parallel shortening will decrease rapidly 
with increasing limb dip until the growth rate of the 
buckling instability and that required for constant length 
amplification instantaneously coincide. In the next in- 
finitesimal strain increment, buckling can occur at con- 
stant arc length. Further amplification must either in- 
volve an increase in arc length, or the growth rate of the 
fold must progressively decrease to mimic that of a 
constant arc length fold (a finite strain effect, as is indeed 
seen in Fig. 10b). As the growth rate due to buckling is 
lower for lower viscosity contrast, low viscosity contrast 
folds will obviously experience more layer parallel short- 
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ening before this critical cross-over point is reached than 
high viscosity contrast folds. Broad initial perturbations 
with lower initial limb dips will also take longer to pass 
this cross-over point and should, therefore, experience 
more layer parallel shortening than narrow pertur- 
bations with higher initial limb dips (Fig. 15). 

For a sinusoidal curve of constant arc length, there is a 
nearly linear relationship between maximum limb dip at 
the inflection point and amplitude up to quite high limb 
dips (Fig. 310. This linear relationship is also seen in the 
experiments (Fig. 12). 

CONCLUSIONS 

The experiments confirm that the presence of an 
initial isolated perturbation in a single layer not only 
controls the location of the developing fold packet but 
also exerts an important influence on the geometry of 

developing folds (e.g. Willis 1893, Hobbs 1914, Biot et 
al. 1961, Cobbold 1975, Lewis & Williams 1978, Wil- 
liams et al. 1978). For isolated and non-periodic initial 
perturbations, folding spreads sideways along the layer 
away from the position of maximum amplitude of the 
initial irregularity. Parameters such as the amount of 
layer parallel shortening, the growth rate of the central 
fold, the maximum amplitude component to the fold 
train and the symmetry (Abbassi & Mancktelow 1990) 
are all affected by the shape of the initial perturbation. 
For the same initial amplitude, broader perturbations 
with lower initial limb dip show a slower growth rate and 
correspondingly greater layer parallel shortening. In the 
extreme, the growth rate of a very broad perturbation 
with very low limb dip must approach zero, and all 
shortening will be accommodated by homogeneous 
layer parallel shortening (e.g. Smith 1975). 

Most of the experimental-scale models were con- 
structed such that slip between layer and matrix was 
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promoted ,  bu t  in one  par t icular  series this interface was 

welded.  Folds in the welded exper iments  grew much  
more  slowly, with cor respondingly  more  layer  paral lel  
shor tening.  These  p re l iminary  results,  which still need  
to be fully tested on  a wider  range  of ana logue  mater ia ls ,  
suggest that  the degree of bond ing  across the interface 
be tween  layer and  matr ix  may  have an impor t an t  influ- 

ence  on  fold geomet ry  at low to mode ra t e  viscosity ratios 
(such as are predic ted  f rom the ra ther  short  wavelengths  
of m a n y  na tu ra l  folds, e.g. table 1 from Smith 1979). If 
easy-slip is possible,  shor ten ing  can be t ransfer red  to 
isolated folding sites by slip a long the interface.  If slip is 
no t  possible,  the shor ten ing  in the layer  mus t  be  accom- 

moda t ed  locally, e i ther  by folding or by layer  paral le l  
shor ten ing ,  with the relat ive impor t ance  d e t e r m i n e d  not  

only by mater ia l  proper t ies  bu t  also by the geomet ry  of 
local irregulari t ies.  

The  init ial  pe r tu rba t ions  cons idered  in this series of 
exper iments  and  in the theoret ical  t r e a tmen t  of buckle  
folding are t aken  to affect the whole  layer,  with identical  
shapes for bo th  layer  surfaces. Such an init ial  geomet ry  
may  be expected in ex tens ional  veins ,  for example ,  
where  the two sides of the vein  should match.  I t  will no t  

be the rule for sed imen ta ry  layers,  where  m a n y  init ial  
i rregulari t ies  affect one  surface only  (e.g. r ipple marks ,  
load casts, channels) .  The  inf luence of such c o m m o n  
irregulari t ies  on  finite fold shape r ema in  to be investi-  
gated in a fur ther  study. 
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APPENDIX 

The limb dip a at the inflection point of a sinusoidal wave form is 
given by tan a = 2~A/L, where A is the amplitude and L the wave- 
length. Both numerical (e.g. Chapple 1968) and analogue models 
(e.g. Hudleston 1973) indicate that wavelength selection only occurs 
during the initial, low amplitude stages of buckle folding, and has 
effectively ceased by 15 ° limb dip. For a = 15 °, a ~ tan a, and thus 
15 ° ~ 360* A/L ,  or A ~ L/24. If the amplification A/A o (A is the 
current amplitude, A 0 the initial perturbation amplitude) is to exceed 
1000 before cessation of the wavelength selection process, then ,40 
must be <-L/24,000. Natural single layer fold wavelengths are gener- 
ally less than 10 times the layer thickness, with common values in the 
range 4-8 (e.g. Sherwin & Chapple 1968, Smith 1979, Hudleston & 
Hoist 1984). It follows that, for natural folds, the amplitude of shape 
perturbations in the layer must be less than around 1/2400 of the layer 
thickness if a well defined dominant wavelength is to be established 
which will be independent of the initial shape of the perturbations: 
i.e. <0.004 mm in a i cm layer or less than 0.4 mm in a I m thick 
layer. 


